Vardiational Bayesian Hybrid Multi-Bernoulli and CPHD Filters for Superpositional Sensors
نویسندگان
چکیده
This paper addresses the problem of multi-target tracking with superpositional sensors, while covariance matrices measurement noise are not known. The proposed method is based on hybrid multi-Bernoulli cardinalized probability hypothesis density (HMB-CPHD) filter, which has been developed for sensors-based known noises. Specifically, we firstly propose Gaussian mixture (GM) implementation HMB-CPHD and then noises augmented into target state vector, resulting in inverse Wishart (GIWM) representation state. Then variational Bayesian (VB) exploited to approximate posterior distribution so that it maintains same form as prior distribution. A remarkable feature can jointly perform estimation. performance algorithm demonstrated via simulations.
منابع مشابه
Hybrid multi-Bernoulli CPHD filter for superpositional sensors
We propose, for the superpositional sensor scenario, a hybrid between the multi-Bernoulli filter and the cardinalized probability hypothesis density (CPHD) filter. We use a multi-Bernoulli random finite set (RFS) to model existing targets and we use an independent and identically distributed cluster (IIDC) RFS to model newborn targets and targets with low probability of existence. Our main cont...
متن کاملMulti-Bernoulli filter and hybrid multi-Bernoulli CPHD filter for superpositional sensors
Superpositional sensor model can characterize the observations in many different applications such as radio frequency tomography, acoustic sensor network based tracking and wireless communications. In this paper we present two filters based on the random finite set (RFS) theory the multi-Bernoulli filter and its variant the hybrid multi-Bernoulli CPHD filter for superpositional sensors. We prov...
متن کاملMulti-sensor PHD and CPHD filters
We study various multi-sensor PHD and CPHD filters and their implementations. 1 Problem Statement The state of the system is the collection of individual target states xk,i ∈ Rx and is denoted by the random finite set Xk = {xk,1, . . .xk,nk} where nk ≥ 0 is number of targets present at time k. We assume that the individual target dynamics are specified according to the Markovian model of the fo...
متن کاملtight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولBayesian Mixtures of Bernoulli Distributions
The mixture of Bernoulli distributions [6] is a technique that is frequently used for the modeling of binary random vectors. They differ from (restricted) Boltzmann Machines in that they do not model the marginal distribution over the binary data space X as a product of (conditional) Bernoulli distributions, but as a weighted sum of Bernoulli distributions. Despite the non-identifiability of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2023
ISSN: ['2079-9292']
DOI: https://doi.org/10.3390/electronics12092083